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For a system contains a group of particles, the above equation

MOMENTUM PRINCIPLE

1. Momentum Equation Derivation

Forces acting on a single particle by using Newton second law is equal to

∑ = maF ∑ =
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Momd sys denotes the total momentum of all masses forming the systemWhere:

It is known from Ch. (5) that the Reynolds transport theorem
For the Mass:
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MOMENTUM PRINCIPLE
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Multiply the above equation by velocity (V), we have

∑∑∫∑ −+=
CS

inout
CSCV

VmVmVQ
dt
dF )()()( &&ρ

The momentum principle for a control surface
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Interpretation of Momentum Equation

Forces associated with flow in a pipe: (a) pipe schematic, (b) control  

volume situated inside the pipe, and (c) control volume surrounding the pipe.
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MOMENTUM PRINCIPLE
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MOMENTUM PRINCIPLE
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3. Momentum Accumulation

The momentum principle for a control surface is given by,

The momentum accumulation

The momentum accumulation for a steady flow = zero
The momentum accumulation for a stationary structure = zero
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MOMENTUM PRINCIPLE

Momentum Diagramme

Momentum flow: 
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MOMENTUM PRINCIPLE

The Momentum Equation for Cartesian Coordinates
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X-direction:

Y-direction:

Z-direction:
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END OF 
LECTURE (1)


